NMR Studies of 1,1-Diphenylboroxazolidone Derivatives of α -Aminoacids

Norberto Farfán,* David Silva, and Rosa Santillan

Departamento de Química, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México, D.F., 07000, México

Received 26 October 1992

ABSTRACT

A series of twelve 1,1-diphenylboroxazolidones (**1b**-**12b**) prepared from α -aminoacids and diphenylborinic acid were studied using one- and, in some cases, two-dimensional (HETCOR) NMR techniques. Interpretation of these spectra led to definitive assignment of all carbon, hydrogen, and boron resonances.

INTRODUCTION

Boroxazolidones (also known as esters or mixed anhydrides of aminoacids and dialkyl or diarylborinic acids) are neutral complexes obtained by reaction of α -aminoacids with borinic acids. These compounds are characterized by a coordinating $N \rightarrow B$ bond, and their stability has been attributed to the formation of five-membered rings [1].

To our knowledge, spectroscopic analysis of these derivatives described in the literature includes ¹H NMR data on aspartic and glutamic derivatives [2], a systematic mass spectrometric study of all diphenyl derivatives of the essential α -aminoacids [3], and an X-ray diffraction study of the boroxazolidone derivative of proline [4]. Thus, the aim of this study is to perform a systematic NMR study (¹H, ¹³C, and ¹¹B) of 12 boroxazolidones. These compounds have been shown to have practical applications due to their broad insecticidal, fungicidal, and herbicidal activity [5], as well as other applications as intermediates in asymmetric hydroboration [6] and in the synthesis of isoquinolines and isoindolines [7].

RESULTS

The boroxazolidones described in this study (1b-12b) were prepared by reaction of glutamic acid (1a), lysine (2a), glycine (3a), isoleucine (4a), leucine (5a), methionine (6a), threonine (7a), aspartic acid (8a), phenyl-glycine (9a), tyrosine (10a), serine (11a), and proline (12a) with diphenyl-borinic acid. In all cases, the commercially available diphenylborinic acid ethanolamine complex was hydrolyzed with HCl previous to reaction [8]. The ¹³C and ¹¹B NMR data of all compounds

The ¹³C and ¹¹B NMR data of all compounds studied are summarized in Table 1, while the ¹H NMR data are included in the experimental section. In all cases, formation of the corresponding boroxazolidone was confirmed by the appearance of a signal between δ +3.0 and +6.7 in the ¹¹B NMR spectrum.

Observation of Table 1 shows that the carbonyl carbon in 1b-12b shows chemical shifts in the range of δ 172–174. The aromatic carbon signals from the diphenylboronic group also show constant chemical shifts and can be assigned based on multiplicity and comparison with similar compounds [1]. Thus, the *ipso* to boron carbons are observed in all cases as broad signals in the range of δ 147–148, the ortho carbons appear around δ 131, the meta carbons around δ 127, and the para carbons between δ 126–127. With the exception of glycine, all boroxazolidone derivatives show diastereotopic signals for the aromatic carbons due to the existence of an asymmetric center at the 2 position. As expected, the main variations in chemical shifts are due to C-2 where the different substituents are introduced.

In general, the methodology used for the assignment of the ¹H and ¹³C NMR spectra of all compounds includes assignment of the ¹H NMR spectrum based on selective homonuclear or het-

^{*}To whom correspondence should be addressed.

	$B-C_{6}H_{5}$											
Compound	i	0	m	p	C-1	C-2	C-3	C-4	C-5	C-6		¹¹ B
	147.7	130.9	127.0	126.9								
1b ^a	147.2 148.1	130.8 131.0	127.9 127.1	125.9 126.0	174.0 ⁶	54.0	24.9°	29.7	173.8			+4.4
2b	147.7	130.9	127.0	125.9	174.4	55.2	29.4 ^c	23.0	32.3°	41.0		+5.4
3b	147.4 147.8	130.9 131.2	127.0 126.9	126.3 125.9	172.4	42.9		—				+6.2
4b ^a	 147.9	131.1 131.0	126.8 127.0	125.8 125.9	173.2	59.2	34.9	14.9	24.7	11.2		+3.6
5b	147.5 147.8	130.9 130.9	126.9 127.0	125.8 125.9	174.5	53.3	38.5°	23.8 ^c	22.8	20.8		+5.6
6b ^a	147.3 147.8	130.8 131.3	126.9 127.0	125.8 125.9	173.9	53.5°	28.8	29.4 [°]	14.1			+3.9
7b ^a	147.2 147.4	131.2 131.0	126.9 127.0	 126.0	172.6	60.5	63.8 ^c	20.6	—			+3.9
8b	146.9	-	126.9	125.9	173.3 [⊳]	51.7	33.7	171.7	 C–C₅H₅			+4.9
9b	147.8 147.6	131.2 131.1	127.2 127.0	126.1 126.0	172.7	58.9		i — 134.3	0 129.2	т 128.3 н	р 128.5	+5.9
10b	148.1 147.3	131.3 130.9 131.0	127.1 127.0 126.9	126.0 125.9 125.9	173.7 175.0	57.1 57.3	34.4 37.5	<i>i'</i> 127.1	0' 130.3	<i>m'</i> 115.4	<i>p'</i> 156.3	+3.0
11b	147.3	130.9 131.2	120.9	126.1	172.3	57.3	58.7					+3.6
12b ^a	145.6	130.8	127.0		174.5	62.1 [°]	27.3	24.8	50.0 ^c		_	+6.7

TABLE 1 ¹³C and ¹¹B NMR Data for Boroxazolidones 1b-12b (ppm) in DMSO-d₆

^aConfirmed by HETCOR.

^bConfirmed by heteronuclear selective decoupling of NH₂ in the ¹³C NMR spectrum.

Confirmed by decoupling adjacent protons in the ¹H NMR spectrum.

eronuclear decoupling techniques, followed by correlation using HETCOR ¹H-¹³C experiments, as described for **1b**.

Assignment of the ¹H NMR spectrum of **1b** was attained by homonuclear decoupling of the H-2 methine which induces changes at the signals at δ 2.04 and 1.84 (H-3 and H-3'). This was confirmed by irradiation of the signal at 2.46 (H-4) which gives rise to a pair of double doublets for H-3 and H-3'. This, in turn, allowed us to assign to the corresponding carbon signals from a bidimensional HETCOR spectrum the values shown in Table 1. Finally, assignment of the C-1 and C-5 carbonyl signals was attained by irradiation of the NH₂ group which shows that the multiplet at lower field in the ¹³C coupled spectrum loses couplings and thus corresponds to C-1.

CONCLUSIONS

Unequivocal assignment of the ¹H and ¹³C NMR spectra of 12 diphenylboroxazolidones (**1b–12b**) was attained by HETCOR and selective homonuclear and heteronuclear decoupling experiments. The existence of an asymmetric carbon at position 2 in all derivatives except for glycine is evidenced by the diastereotopic signals of the phenyl group in both the ¹H and ¹³C spectra. In agreement with previous reports [7], heterocyclic five-membered rings are formed even in those cases where six- or seven-membered rings are possible (glutamic and aspartic acids).

EXPERIMENTAL

The ¹¹B NMR spectra were determined on a Jeol FX90Q spectrometer in DMSO-d₆ solution using $BF_3 \cdot OEt_2$ as an external reference. The ¹H and ¹³C NMR spectra were obtained on a Jeol GSX-270 instrument in DMSO-d₆ using TMS as an internal reference. The IR spectra were measured on a Nicolet MX-1FT spectrophotometer using KBr. Melting points were determined on a Gallenkamp MFB-595 apparatus and are uncorrected.

L-Glutamic acid (1a), L-lysine (2a), L-glycine (3a), L-isoleucine (4a), L-leucine (5a), L-methionine (6a), L-threonine (7a), L-aspartic acid (8a), L-phenylglycine (9a), L-tyrosine (10a), L-serine (11a), and L-proline are commercially available products.

Diphenylborinic acid was prepared from the corresponding ethanolamine complex, as described in the literature [8].

In all cases, equimolar amounts of diphenylborinic acid in (a) methanol, (b) ethanol, (c) methanol-water (5:1), or (d) ethanol-water (5:1) were mixed and heated for 5 hours and the solid product that formed was collected by filtration.

Diphenyl(glutamate-O,N)borane (1b). (a) 66% Yield; mp 169–170°C; IR ν_{max} (KBr): 3450, 3250, 3100, 1711 (C=O), 1433, 1252, 975, and 712 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.43 (dd, J = 11, 9 Hz, 1H, NH), 7.38 (d, J = 8 Hz, 4H, H ortho), 7.22 (2 t, J =8, Hz, 4H, H meta), 7.16 (2 d, J = 7, 2H, H para), 6.77 (dd, J = 11, 9 Hz, 1H, NH'), 3.58 (quint, J =5 Hz, 1H, H-2), 2.46 (t, J = 7 Hz, 2H, H-4), 2.04 (sext, J = 5 Hz, 1H, H-3), and 1.84 (sext, J = 7 Hz, 1H, H-3').

Diphenyl(lysinate-O,N)borane (2b). (d) 58% Yield; mp 192–193°C; IR ν_{max} (KBr): 3171, 3135, 2930, 1712 (C=O). 1631, 1433, 1291, 950, 762, and 703 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.46 (t, J = 7 Hz, 1H, NH), 7.44 (d, J = 7 Hz, 2H, H ortho), 7.39 (d, J = 7 Hz, 2H, H ortho'), 7.24 (2 t, J = 7 Hz, 4H, H meta), 7.16 (t, J = 7 Hz, 1H, H para), 7.14 (t, J = 7Hz, 1H, H para'), 7.04 (t, J = 7 Hz, 1H, NH'), 3.50 (q, J = 5 Hz, 1H, H-2), 2.55 (quint, J = 6 Hz, 2H, H-6), 3.25 (b, 2H, NH₂), 1.85–1.65 (m, 1H, H-3), 1.65– 1.50 (m, 1H, H-3'), and 1.50–1.20 (m, 4H, H-4,4',5,5').

Diphenyl(glycinate-O,N-borane) (**3b**). (d) 26% Yield; mp 242–245°C; IR ν_{max} (KBr): 3425, 3244, 3072, 1721 (C=O), 1600, 1433, 1302, 1220, 963, 750, and 704 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.38 (d, J = 7 Hz, 4H, H ortho), 7.22 (t, J = 7, 4H, H meta), 7.14 (t, J = 7 Hz, 2H, H para), 7.06 (bt, 2H, NH), and 3.43 (t, J = 6 Hz, 2H, H-2).

Diphenyl(isoleucinate-O,N)borane (4b). (b) 88% Yield; mp 221–223°C; IR ν_{max} (KBr): 3447, 3275, 3075, 2925, 1700 (C=O), 1437, 1267, 950, and 668 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.42 (d, J = 7 Hz, 4H, H ortho), 7.27 (dd, J = 12, 8 Hz, 1H, NH), 7.20 (t, J = 7 Hz, 4H, H meta), 7.12 (t, J = 7 Hz, 2H, H para), 7.14 (t, J = 7 Hz, 1H, H para'), 6.29 (dd, J =12, 8 Hz, 1H, NH'), 3.46 (q, J = 6 Hz, 1H, H-2), 1.90–1.75 (m, 1H, H-3), 1.55–1.35 (m, 1H, H-5), 1.35–1.15 (m, 1H, H-5'), 0.94 (d, J = 7 Hz, 3H, CH₃ – 4), and 0.75 (t, J = 7 Hz, 3H, CH₃-6).

Diphenyl(leucinate-O,N)borane (**5b**). (b) 100% Yield; mp 171–174°C; IR ν_{max} (KBr): 3426, 3305, 3302, 1719 (C=O), 1641, 1437, 1266, 962, and 700 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.40 (d, J = 7 Hz, 4H, H ortho), 7.31 (bd, J = 12 Hz, 1H, NH), 7.21 (t, J= 7, 4H, H meta), 7.15 (td, J = 7, 2 Hz, 1H, H para), 7.12 (td, J = 7, 2 Hz, 1H, H para'), 6.69 (bd, J = 12 Hz, 1H, NH), 3.46 (q, J = 7 Hz, 1H, H-2), 1.90–1.76 (m, 1H, H-4), 1.64–1.45 (m, 2H, H-3), 0.85, and 0.82 (2 d, J = 7 Hz, 6H, CH₃-5,6).

Diphenyl(methionate-O,N)borane (**6b**). (d) 78% Yield; mp 222–224°C; IR ν_{max} (KBr): 3429, 3306, 2925, 1715 (C=O), 1640, 1537, 1437, 1275, 962, and 700 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.41 (d, J = 7 Hz, 4H, H ortho), 7.23 (2 t, J = 7 Hz, 4H, H meta), 7.15 (t, J = 7 Hz, 1H, H para), 7.13 (t, J = 7 Hz, 1H, H para'), 6.80 (t, J = 10 Hz, 1H, NH), 3.75–3.56 (m, 1H, H-2), 2.74–2.50 (m, 2H, H-4), 2.12–1.84 (m, 2H, H-3), and 1.98 (s, 3H, CH₃-5).

Diphenyl(threoninate-O,N)borane (**7b**). (d) 58% Yield; mp 202–203°C; IR ν_{max} (KBr): 3410, 3076, 2930, 1718 (C=O), 1642, 1433, 1274, 945, and 742 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.43 (d, J = 7 Hz, 4H, H ortho), 7.22 (2 t, J = 7, 4H, H meta), 7.16 (t, J = 7 Hz, 1H, H para), 7.14 (t, J = 7 Hz, 1H, H para'), 5.77 (t, J = 10 Hz, 1H, NH), 5.41 (d, J = 5 Hz, 1H, OH), 4.07 (m, 1H, H-3), 3.55 (sext, J = 4 Hz, 1H, H-2), and 1.19 (d, J = 7 Hz, 3H, CH₃-4).

Diphenyl(aspartate-O,N)borane (8b). (a) 17%

Yield; decomp. 275°C; IR ν_{max} (KBr): 3072, 2358, 1724 (C=O), 1590, 1434, 1392, 1298, 1222, 952, and 704 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.43 (d, J = 8 Hz, 4H, H ortho), 7.37 (t, 1H, NH), 7.22 (t, J = 7 Hz, 4H, H meta), 7.16 (t, J = 7 Hz, 1H para), 7.14 (t, J = 7 Hz, 1H, H para'), 6.80 (t, J = 11 Hz, 1H, NH'), 3.77 (sext, J = 6 Hz, 1H, H-2), and 2.78 (d, J = 6 Hz, 2H, H-3).

Diphenyl(phenylglycinate-O,N)borane (9b). (b) 29% Yield; mp 168–170°C; IR ν_{max} (KBr): 3450, 2925, 1718 (C=O), 1653, 1562, 1450, 1262, 963, 687, and 668 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.92 (dd, J = 12, 8 Hz, 1H, NH), 7.47, and 7.41 (2 d, J = 7 Hz, 4H, H ortho) 7.28 (s, 5H, H aromatic), 7.23 (t, J = 9 Hz, 4H, H meta), 7.14 (t, J = 9 Hz, 1H, H para), 7.12 (t, J = 9 Hz, 1H, H para'), and 4.74 (t, J = 8 Hz, 1H, H-2).

Diphenyl(tyrosinate-O,N)borane (10b). (b) 21% Yield; mp 149–150°C; ¹H NMR (DMSO-d₆) δ 9.34 (b, 1H, OH), 7.43, and 7.41 (2 d, J = 7 Hz, 4H, H ortho), 7.22 (t, J = 7 Hz, 2H, H meta), 7.20 (t, J =7 Hz, 2H, H meta'), 7.17 (t, J = 7 Hz, 1H, H para), 7.14 (t, J = 7 Hz, 1H, H para'), 7.06 (d, J = 8 Hz, 2H, H-5), 6.72 (d, J = 8 Hz, 2H, H-6), 6.64 (t, J =8 Hz, 1H, NH), 3.68–3.54 (m, 1H, H-2), 3.06 (dd, J =14, 3 Hz, 1H, H-3), and 2.83 (dd, J = 14, 10 Hz, 1H, H-3').

Diphenyl(serinate-O,N)borane (11b). (c) 36% Yield; mp 259-260°C; ¹H NMR (DMSO-d₆) δ 7.4 (d, J = 7 Hz, 4H, H ortho), 7.21 (t, J = 7 Hz, 4H, H meta), 7.15 (t, J = 7 Hz, 1H, H para), 7.13 (t, J = 7Hz, 1H, H para'), 6.28 (dd, J = 11, 8 Hz, 1H, NH), 5.25 (t, J = 5 Hz, 1H, OH), and 3.78–3.60 (m, 3H, H-2, 3,3').

Diphenyl(prolinate-O,N)borane (12b). (d) 100% Yield; mp 268–269°C; IR ν_{max} (KBr) 3431, 2925, 1719 (C=O), 1640, 1537, 1495, 1287, 937, and 709 cm⁻¹; ¹H NMR (DMSO-d₆) δ 7.93 (dd, J = 12, 7 Hz, 1H, NH), 7.49 (d, J = 8 Hz, 2H, H ortho), 7.45 (d, J =8 Hz, 2H, H ortho'), 7.22 (t, J = 8 Hz, 4H, H meta), 7.16 (t, J = 7 Hz, 1H, H para), 7.13 (t, J = 7 Hz, 1H, H para'), 4.22 (q, 1H, H-2), 3.00 (sext, J = 5 Hz, 1H, H-5), 2.40, (sext, 1H, H-5'), 2.20–1.90 (m, 2H, H-3,3'), and 1.70 (quint, J = 7 Hz, 2H, H-4).

ACKNOWLEDGMENT

We are grateful to CONACYT and to COSNET-SEP for financial support and to Ing. Guillermo Uribe for NMR spectra.

REFERENCES

- [1] N. Farfán, D. Castillo, P. Joseph-Nathan, R. Contreras, L. V. Szetpály, J. Chem. Soc., Perkin Trans., 2, 1992, 527.
- [2] G. H. L. Nefkens, B. Zwanenburg, Tetrahedron, 39, 1983, 2995.
- [3] C. J. Strang, E. Henson, Y. Okamoto, M. A. Paz, P. M. Gallop, Anal. Biochem., 178, 1989, 276.
- [4] S. J. Rettig, J. Trotter, Can. J. Chem., 55, 1977, 958.
- [5] K. Lang, K. Nuetzel, F. Schubert: Ger. Pat., 1,130,445 (1962), Chem Abstr. 58 (1963) 1488a.
- [6] H. C. Brown, A. K. Gupta, J. Organomet. Chem., 341, 1988, 73.
- [7] G. H. L. Nefkens, B. Zwanenburg, Tetrahedron, 41, 1985, 6063.
- [8] G. N. Chremos, H. Weidmann, H. K. Zimmerman, J. Org. Chem., 26, 1961, 1683.